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Fig. 1 Arbitrary
plane finite-element

structure.

k = j + 1 • Thus, elements of T for the hybrids may be listed
as in Table 1.

Formation of matrix H"1 is trivial for hybrid HI. For hy-
brids H2-H4, linear and quadratic terms must be integrated
to produce H; this is done exactly by Gaussian quadrature
using four integration points. Use was made of efficiencies
suggested by Irons3 for integration and manipulation of the
form PrNP. Direct formation of H using properties of plane
areas should be faster, but lacks the generality desirable for
further extension, e.g., to variable thickness elements.

Formation times for k are given in Table 2. The trace of k
is given for subsequent reference. Also given in Table 2 is
the time required for element stress computation, which
consists of reforming H"1!*, postmultiplying by q, premulti-
plying by P for each element corner, and printing.

The grade 1 "isoparametric" quadrilateral3 is a displace-
ment model competitive with the hybrids. Data is given for
this model in Table 2. Gaussian quadrature using one point
(II) and four points (14) is considered (the latter is exact
for a rectangular element). Finally Table 2 lists data for a
quadrilateral composed of four constant-strain triangles (T4).

Numerical Example and Conclusions

An arbitrary plane structure composed of norirectangular
elements (Fig. 1) was loaded by a uniformly distributed shear
Txy along edge CDE. Finite-element meshes of N = 1, 2, 4, 8,
and 16 were used.

Vertical deflections of point D for the several meshes and
elements are shown in Fig. 2. Validity of the hybrid formula-
tions is confirmed by comparison with displacement models
II and 74. Results given by element T4 are riot shown, as
they are practically identical to those given by element 74.
Excluding T4, traces of nonrectangular elements are ranked
in the same order seen in Table 2; hence, it appears that the
quality of a k matrix is not directly related to its trace, as has
been suggested.4 One-element structures not shown in Fig. 2
were kinematically unstable.

Stresses plotted in Fig. 3 are averages of stresses along AB
in each pair of elements; e.g., along the lower quarter of AB
the plotted stress represents [(arx in el. 2)AB + (<rx in
el.3)^]/2.

Formulations HI and 71 produce identical stiffness ma-
trices, regardless of element shape. Stresses calculated by
use of 71 are unsatisfactory in a coarse mesh, even though the
calculation of stresses from displacements involves no numeri-
cal integration; however (as expected3) 71 is satisfactory in a
fine mesh. Hybrid H1 seems preferable to both 71 and 74.
Hybrid 7/2 seems preferable to 74 in spite of the time dis-
advantage seen in Table 2. The additional stress modes in
H3 and 7/4 produce no advantage over 7/2, a conclusion in
agreement with remarks of Pian and Tong.5

Fig. 2 Vertical deflec-
tion of point D in Fig.

1.

Fig. 3 Stress <rx
along line AB in Fig.
1 for N = 4. Circles
represent node point
averages for N = 16
produced by hybrid

H4.

References
1 Pian, T. H. H., "Derivation of Element Stiffness Matrices by

Assumed Stress Distributions," AIAA Journal, Vol. 2, No. 7,
July 1964, pp. 1333-1336.

2 Dungar, R. and Severn, R. T., "Triangular Finite Elements of
Variable Thickness and Their Application to Plate and Shell
Problems," Journal of Strain Analysis, Vol. 4, No. 1, Jan. 1969,
pp. 10-21.

3 Irons, B. M., "Engineering Applications of Numerical In-
tegration in Stiffness Methods," AIAA Journal, Vol. 4, No. 11,
Nov. 1966, pp. 2035-2037.

4 Khanna, J., "Criterion for Selecting Stiffness Matrices,"
AIAA Journal, Vol. 3, No. 10, Oct. 1965, p. 1976.

5 Pian, T. H. H. and Tong, P., "Rationalization in Deriving
Element Stiffness Matrix by Assumed Stress Approach," pre-
sented at Second Conference 011 Matrix Methods in Structural
Mechanics, Wright-Patterson Air Force Base, Ohio, Oct. 1968.

An Experimental Investigation of the
Buckling of Toroidal Shells

B. 0. ALMROTH,* L. H. SOBEL,! AND A. R.
Lockheed Missiles & Space Company, Polo Alto, Calif.

Nomenclature

a = meridional radius of curvature (see Fig. 1)
6 = distance between the center of the circular meridian and the

axis of revolution (see Fig. 1 )
E = Young's modulus
h = thickness of shell
p = uniform hydrostatic pressure loading

THEORETICAL results for the buckling of toroidal shells
under uniform external pressure are presented by Sobel and

Fliigge.1 These results are in very good agreement with the
few available test results. However, these experimental re-
sults are for a rather slender torus (b/a = 8, see Fig. 1 for
notation). Therefore toroidal shells with a smaller value of
b/a were manufactured and tested. The dimensions of the
tested shells are b = 5 in., a = 2.5 in, and thickness h = 0.050
in. For a meaningful comparison between theory and test, it
is important that the test specimen has a reasonably uniform
thickness distribution. It was believed that this could best
be achieved if the shells are manufactured by casting an
epoxy resin material. The toroidal shell was cast in two
halves which were later glued together. In this way exces-
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Fig. 1 Notation
for a toroidal

shell.

sive variations in the thickness were avoided and a high de-
gree of accuracy in the geometry of the shell's middle surface
was achieved. To obtain accurate values of the critical
pressures for epoxy shells, one must select the material com-
position in such a way that room temperature creep is
minimized. This selection results in a material that has a
high modulus and is brittle. Thus when buckling occurs,
the shell shatters and it is not possible to observe the develop-
ment of a buckling pattern. Therefore, in addition to the
shells with high modulus, one shell was manufactured from a
very ductile material with a low modulus. The epoxy system
for the brittle and high-modulus (E = 500,000) material is
composed of 100 pbw Bakelite Resin ERL 2774, and 10 pbw
Diethanolamine. The low modulus material was obtained
through addition of 60 pbw Thiokol LP33 to the composition
used for the brittle material. The material components were
thoroughly mixed at 100°F. The mold for the half-torus
together with the epoxy system was placed in a furnace that
was maintained at a temperature of 160°. The epoxy was
forced to fill the mold under pressure. The flow rate was held
very low in order to minimize entrapment of air. About 1 hr
was required to fill the mold. The male mandrel portion of

b) Axisymmetric buckling

the mold was allowed to free float on the resin such that it
lifted when the mold was full. Then the epoxy was allowed
to flow over the edges for some time before the free floating
mandrel was clamped tight to the female part. After a curing
cycle of 24 hr at 160°F the half-shell was removed from the
mold. A room temperature curing adhesive was used to bond
the two halves of the shell together. The following adhesive
composition was selected to match the material properties of
the shell: 100 pbw Bakelite Resin ERL 2774, 10 pbw Tri-
ethylenetetramine, 3 pbw Aluminum Powder.

Three shells made from the brittle material were tested.
External pressure was applied through partial evacuation of
the air in the shell. The experimentally determined pressures
at failure for the shells are 6.32, 6.60, and 6.64 psi, whereas the
theoretical pressure (Ref. 1) based on nominal dimensions is
7.00 psi. After the tests, thickness measurements were made
on the shell fragments. It appeared that the thickness was
quite uniform but somewhat less than the nominal value of
0.050 in. Thus, the experimental values are somewhat above
the theoretical buckling load based on actual dimensions.

One toroidal shell was manufactured from the ductile ma-
terial. The photographs in Fig. 2 show how the buckling
pattern develops for this shell. Figures 2a and 2b, respec-
tively, show the torus before and after application of pressure.
From Figs. 2b, it is seen that an axisymmetric deformation
pattern has developed. As the load is further increased a
nonsymmetrical buckling pattern (see Fig. 2c) is superim-
posed on the symmetrical pattern. According to theory, the
axisymmetric buckling mode is critical for a torus with b/a
= 2 and a/h = 50. This buckling pattern appears to be
stable (the buckle amplitude grows under increasing load).
As a small amplitude symmetric buckling is difficult to detect,
it seems possible that the brittle shells really buckled at loads
somewhat below those at which the shell shattered. This
would tend to explain the somewhat higher values of the ex-
perimental buckling pressures.

It can be concluded that for accurately manufactured
toroidal shells, such as those tested here, one can expect good
agreement between test and theory.
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Optimized Acceleration of Convergence
of an Implicit Nnmerical Solution

of the Time-Dependent Navier-
Stokes Equations
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Nomenclature
J- — vorticity

stream function
angular velocity of body
kinematic viscosity
cell size
time step

c) Nonsymmetric buckling

Fig. 2 Photographs of ductile test specimen.
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